Zhang MJ, Gao XY, Cao MD, Ma YJ "Modelling citation networks for improving scientific paper classification performance " PRICAI 2006: Trends in Artificial Intelligence, Proceedings Lecutre Notes in Artificial Intelligence 4099: 413-422 2006
Eugene Garfield
garfield at CODEX.CIS.UPENN.EDU
Wed Jan 24 15:18:32 EST 2007
E-mail Addresses: mengjie at mcs.vuw.ac.nz, xgao at mcs.vuw.ac.nz,
minducao at mcs.vuw.ac.nz, myj at hebau.edu.cn
Title: Modelling citation networks for improving scientific paper
classification performance
Author(s): Zhang MJ (Zhang, Mengjie), Gao XY (Gao, Xiaoying), Cao MD (Cao,
Minh Due), Ma YJ (Ma, Yuejin)
Source: PRICAI 2006: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS LECTURE
NOTES IN ARTIFICIAL INTELLIGENCE 4099: 413-422 2006
Document Type: Article Language: English
Cited References: 25 Times Cited: 0
Abstract:
This paper describes an approach to the use of citation links to improve
the scientific paper classification performance. In this approach, we
develop two refinement functions, a linear label refinement (LLR) and a
probabilistic label refinement (PLR), to model the citation link structures
of the scientific papers for refining the class labels of the documents
obtained by the content-based Naive Bayes classification method. The
approach with the two new refinement models is examined and compared with
the content-based Naive Bayes method on a standard paper classification
data set with increasing training set sizes. The results suggest that both
refinement models can significantly improve the system performance over the
content-based method for all the training set sizes and that PLR is better
than LLR when the training examples are sufficient.
Addresses: Zhang MJ (reprint author), Victoria Univ Wellington, Sch Math
Stat & Comp Sci, POB 600, Wellington, New Zealand
Victoria Univ Wellington, Sch Math Stat & Comp Sci, Wellington, New Zealand
Agr Univ Hebei, Coll Mech & Elect Engn, Artificial Intelligence Res Ctr,
Baoding, Peoples R China
E-mail Addresses: mengjie at mcs.vuw.ac.nz, xgao at mcs.vuw.ac.nz,
minducao at mcs.vuw.ac.nz, myj at hebau.edu.cn
Publisher: SPRINGER-VERLAG BERLIN, HEIDELBERGER PLATZ 3, D-14197 BERLIN,
GERMANY
IDS Number: BEY22
ISSN: 0302-9743
CITED REFERENCES :
CAO MD
P 18 AUSTR JOINT C A : 143 2005
CHAKRABARTI S
P ACM SIGMOD INT C M : 307 1998
COWELL R
INTRO INFERENCE BAYE : 9 1999
CRAVEN M
Relational learning with statistical predicate invention: Better models for
hypertext
MACHINE LEARNING 43 : 97 2001
GETOOR L
IJCAI WORKSH TEST LE : 2001
GHAHRAMANI Z
HDB BRAIN THEORY NEU : 486 2003
JOACHIMS T
P 10 EUR C MACH LEAR : 137 1998
JORDAN MI
HDB BRAIN THEORY NEU : 490 2003
LEWIS DD
P 3 ANN S DOC AN INF : 81 1994
LEWIS DD
P ECML 98 10 EUR C M : 4 1998
LU Q
ICML WORKSH CONT LAB : 2003
LU Q
IJCAI WORKSH TEXT MI : 2003
LU Q
INT C MACH LEARN : 2003
MACKAY DJC
LEARNING GRAPHICAL M : 175 1999
MCCALLUM AK
Automating the construction of internet portals with machine learning
INFORMATION RETRIEVAL 3 : 127 2000
NIGAM K
IJCAI 99 WORKSH MACH : 61 1999
OH HJ
P 23 ANN INT ACM SIG : 264 2000
PAGE RN
Moral aspects of curriculum: 'making kids care' about school knowledge
JOURNAL OF CURRICULUM STUDIES 30 : 1 1998
PEARL J
PROBABILISTIC REASON : 1988
QUINLAN JR
LEARNING LOGICAL DEFINITIONS FROM RELATIONS
MACHINE LEARNING 5 : 239 1990
RUIZ ME
P SIGIR 99 22 ACM IN : 281 1999
RUSSELL S
ARTIFICIAL INTELLIGE : 2005
TASKAR B
P 17 INT JOINT C ART : 870 2001
YANG Y
P 17 ANN INT ACM SIG : 13 1994
YEDIDIA JS
TR200122 MIT EL RES : 2002
More information about the SIGMETRICS
mailing list