Huang S, Xue GR, Zhang BY, Chen Z, Yu Y, Ma WY " TSSP: A reinforcement algorithm to find related papers" IEEE/WIC/ACM International Conference On Web Intelligence (WI 2004), Proceedings : 117-123, 2004

Eugene Garfield garfield at CODEX.CIS.UPENN.EDU
Fri Jul 21 16:04:02 EDT 2006


Shen Huang : Shuang at cs.sjtu.edu.cn
Gui-Rong Xue : grxue at sjtu.edu.cn
Yong Yu : yyu at cs.sjtu.edu.cn
Ben-Yu Zhang : byzhang at microsoft.com
Zheng Chen : zhengc at microsoft.com
Wei-Ying Ma : wyma at microsoft.com


Title: TSSP: A reinforcement algorithm to find related papers

Author(s): Huang S, Xue GR, Zhang BY, Chen Z, Yu Y, Ma WY

Source: IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI
2004), PROCEEDINGS : 117-123, 2004

Editor(s): Zhong N, Tirri H, Yao YY, Zhou L, Liu J, Cercone N

Document Type: Article
Language: English
Cited References: 21

Conference Information: IEEE/WIC/ACM International Conference on Web
Intelligence
Beijing, PEOPLES R CHINA, SEP 20-24, 2004

IEEE Comp Soc; AMC; Web Intelligence Consortium; Beijing Univ Technol; NSFC

Abstract:
content analysis and citation analysis are two common methods it?
recommending system. Compared with content analysis, citation analysis can
discover more implicitly related papers. However, the citation-based
methods may introduce more noise in citation graph and cause topic drift.
Some work combine content with citation to improve similarity measurement.
The problem is that the two features are not used to reinforce each other
to get better result. To solve the problem, we propose a new algorithm,
Topic Sensitive Similarity Propagation (TSSP), to effectively integrate
content similarity, into similarity propagation. TSSP has two parts.
citation context based propagation and iterative reinforcement. First,
citation contexts provide clues for which papers are topic related to and
filter out less irrelevant citations. Second, iteratively integrating
content and citation similarity enable them to reinforce each other during
the propagation. The experimental results of a user study show TSSP
outperforms other algorithms in almost all cases.

KeyWords Plus: RETRIEVAL; INFORMATION

Addresses: Huang S (reprint author), Shanghai Jiao Tong Univ, Shanghai
200030, Peoples R China
Shanghai Jiao Tong Univ, Shanghai 200030, Peoples R China

Publisher: IEEE COMPUTER SOC, 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS
ALAMITOS, CA 90720-1264 USA
IDS Number: BBB14

ISBN: 0-7695-2100-2

CITED REFERENCES :
AMSLER R
7214 U TEX AUST : 1972

 BHARAT K
P 21 ACM SIGIR C : 1998

 BIN S
P 7 WORLD WID WEB C : 1998

 CHAKRABARTI S
COMPUTER 32 : 1999

 CHAKRABARTI S
P 7 INT WORLD WID WE : 1998

 COHEN PR
title not available
INFORM PROCESS MANAG 23 : 255 1987

 DEAN J
P 8 INT WORLD WID WE : 389 1999

 FOX E
THESIS CORNELL U : 1983

 FURNAS GW
COMMUN ACM 30 : 1987

 HIDETSUGU N
IPSJ J : 2000

 JEH G
P 8 ACM SIGKDD INT C : 2002

 KESSLER MM
title not available
AM DOC 14 : 10 1963

 KLEINBERG JM
title not available
J ACM 46 : 604 1999

 LAWRENCE S
P 8 ACM INT C INF KN : 1999

 MCNEE SM
P 2002 ACM C COMP SU : 2002

 SALTON G
title not available
INFORMATION PROCESSI 24 : 513 1988

 SALTON G
title not available
J ACM 10 : 440 1963

 SMALL H
title not available
J AM SOC INFORM SCI 24 : 265 1973

 WEINSTOCK M
ENCY LIBRARY INFORMA 5 : 16 1971

 WEN JR
P 10 INT WORLD WID W : 2001

 XUE GR
P 13 WWW C POST : 2004



More information about the SIGMETRICS mailing list