Shimbo, M (Shimbo, Masashi); Ito, T (Ito, Takahiko); Mochihashi, D (Mochihashi, Daichi); Matsumoto, Y (Matsumoto, Yuji) On the properties of von Neumann kernels for link analysis MACHINE LEARNING, 75 (1): 37-67 APR 2009

Eugene Garfield garfield at CODEX.CIS.UPENN.EDU
Wed Mar 25 12:19:41 EDT 2009


E-mail Address: shimbo at is.naist.jp; tito at microsoft.com; 
daichi at cslab.kecl.ntt.co.jp; matsu at is.naist.jp 

Author(s): Shimbo, M (Shimbo, Masashi); Ito, T (Ito, Takahiko); 
Mochihashi, D (Mochihashi, Daichi); Matsumoto, Y (Matsumoto, Yuji) 

Title: On the properties of von Neumann kernels for link analysis 

Source: MACHINE LEARNING, 75 (1): 37-67 APR 2009 

Language: English 

Document Type: Article 

Author Keywords: Link analysis; Recommender system; von Neumann kernel; 
HITS; Topic drift 

KeyWords Plus: LATENT SEMANTIC ANALYSIS; DOCUMENTS; GRAPH 

Abstract: We study the effectiveness of Kandola et al.'s von Neumann 
kernels as a link analysis measure. We show that von Neumann kernels 
subsume Kleinberg's HITS importance at the limit of their parameter range. 
Because they reduce to co-citation relatedness at the other end of the 
parameter, von Neumann kernels give us a spectrum of link analysis 
measures between the two established measures of importance and 
relatedness. Hence the relative merit of a vertex can be evaluated in 
terms of varying trade-offs between the global importance and the local 
relatedness within a single parametric framework. As a generalization of 
HITS, von Neumann kernels inherit the problem of topic drift. When a graph 
consists of multiple communities each representing a different topic, HITS 
is known to rank vertices in the most dominant community higher regardless 
of the query term. This problem persists in von Neumann kernels; when the 
parameter is biased towards the direction of global importance, they tend 
to rank vertices in the dominant community uniformly higher irrespective 
of the community of the seed vertex relative to which the ranking is 
computed. To alleviate topic drift, we propose to use of a PLSI-based 
technique in combination with von Neumann kernels. Experimental results on 
a citation network of scientific papers demonstrate the characteristics 
and effectiveness of von Neumann kernels. 

Addresses: [Shimbo, Masashi; Ito, Takahiko; Matsumoto, Yuji] Nara Inst Sci 
& Technol, Grad Sch Informat Sci, Nara 6300192, Japan; [Mochihashi, 
Daichi] NTT Commun Sci Labs, Keihanna Sci City, Kyoto 6190237, Japan 

Reprint Address: Shimbo, M, Nara Inst Sci & Technol, Grad Sch Informat 
Sci, 8916-5 Takayama, Nara 6300192, Japan. 

E-mail Address: shimbo at is.naist.jp; tito at microsoft.com; 
daichi at cslab.kecl.ntt.co.jp; matsu at is.naist.jp 

Cited Reference Count: 40 

Times Cited: 0 

Publisher: SPRINGER 

Publisher Address: VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 

ISSN: 0885-6125 

DOI: 10.1007/s10994-008-5090-6 

29-char Source Abbrev.: MACH LEARN 

ISO Source Abbrev.: Mach. Learn. 

Source Item Page Count: 31 

Subject Category: Computer Science, Artificial Intelligence 

ISI Document Delivery No.: 411TO 

ACHARYYA S
WORKSH LINK AN DET C : 2003 

BALDI P
MODELING INTERNET WE : 2003 

BHARAT K
P 21 ANN INT ACM SIG : 1998 

BOLLACKER K
P 2 INT C AUT AG : 116 1998 

BRIN S
The anatomy of a large-scale hypertextual Web search engine 
COMPUTER NETWORKS AND ISDN SYSTEMS 30 : 107 1998 

CHEBOTAREV PY
The matrix-forest theorem and measuring relations in small social groups 
AUTOMATION AND REMOTE CONTROL 58 : 1505 1997 

CHUNG FRK
SPECTRAL GRAPH THEOR : 1997 

COHN D
P 17 INT C MACH LEAR : 167 2000 

CRISTIANINI N
On kernel-target alignment
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 14, VOLS 1 AND 2 14 : 
367 2002 

DALE R
HDB NATURAL LANGUAGE : 2000 

DEERWESTER S
INDEXING BY LATENT SEMANTIC ANALYSIS 
JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE 41 : 391 1990 

DHYANI D
A survey of Web metrics 
ACM COMPUTING SURVEYS 34 : 469 2002 

FAGIN R
Comparing top k lists 
SIAM JOURNAL ON DISCRETE MATHEMATICS 17 : 134 DOI 
10.1137/S0895480102412856 2003 

FOUSS F
Random-walk computation of similarities between nodes of a graph with 
application to collaborative recommendation 
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 19 : 355 2007 

FOUSS F
P 2006 IEEE INT C DA : 863 2006 

HAUSSLER D
UCSCCRL9910 : 1999 

HOFMANN T
Learning the similarity of documents: An information-geometric approach to 
document, retrieval and categorization
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 12 12 : 914 2000 

HOFMANN T
Unsupervised learning by probabilistic latent semantic analysis 
MACHINE LEARNING 42 : 177 2001 

HOFMANN T
P 22 ANN INT ACM SIG : 50 1999 

ITO T
P 10 EUR C PRINC PRA : 235 2006 

ITO T
P 11 ACM SIGKDD : 586 2005 

JAAKKOLA TS
Exploiting generative models in discriminative classifiers
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 11 11 : 487 1999 

KANDOLA J
ADV NEURAL INFORM PR 15 : 673 2003 

KANDOLA J
NCTR2002121 : 2002 

KESSLER MM
BIBLIOGRAPHIC COUPLING BETWEEN SCIENTIFIC PAPERS
AMERICAN DOCUMENTATION 14 : 10 1963 

KLEINBERG JM
Authoritative sources in a hyperlinked environment 
JOURNAL OF THE ACM 46 : 604 1999 

KONDOR R
P 18 INT C MACH LEAR : 21 2001 

LEMPEL R
SALSA: The stochastic approach for link-structure analysis 
ACM TRANSACTIONS ON INFORMATION SYSTEMS 19 : 131 2001 

LEPAIR C
HDB QUANTITATIVE STU : 537 1988 

NADLER B
ADV NEURAL INFORM PR 18 : 955 2006 

SAERENS M
The principal components analysis of a graph, and its relationships to 
spectral clustering 
MACHINE LEARNING: ECML 2004, PROCEEDINGS 3201 : 371 2004 

SHAWETAYLOR J
KERNEL METHODS PATTE : 2004 

SHIMBO M
MINING GRAPH DATA : CH12 2006 

SHIMBO M
P ACM IEEE JOINT C D : 354 2007 

SIEGEL S
NONPARAMETRIC STAT B : 1988 

SMALL H
COCITATION IN SCIENTIFIC LITERATURE - NEW MEASURE OF RELATIONSHIP BETWEEN 
2 DOCUMENTS
JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE 24 : 265 1973 

SMOLA AJ
Kernels and regularization on graphs 
LEARNING THEORY AND KERNEL MACHINES 2777 : 144 2003 

WHITE S
P 9 ACM SIGKDD INT C : 266 2003 

ZELNIKMANOR L
ADV NEURAL INFORM PR 17 : 2005 

ZHOU D
P WORKSH STAT REL LE : 2004 



More information about the SIGMETRICS mailing list