Theeramunkong, T; Sriphaew, K; Okumura, M Applying latent semantic indexing in frequent itemset mining for document relation discovery ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS 731-738, 2008

Eugene Garfield garfield at CODEX.CIS.UPENN.EDU
Mon Jun 23 14:39:51 EDT 2008


Author(s): Theeramunkong, T (Theeramunkong, Thanaruk); Sriphaew, K 
(Sriphaew, Kritsada); Okumura, M (Okumura, Manabu) 

Title: Applying latent semantic indexing in frequent itemset mining for 
document relation discovery 

Editor(s): Washio, T; Suzuki, E; Ting, KM; Inokuchi, A 

Source: ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS 731-
738, 2008

Email Address: thanaruk at siit.tu.ac.th

Book Series: LECTURE NOTES IN ARTIFICIAL INTELLIGENCE, 5012 

Language: English 

Document Type: Article 

Conference Title: 12th Pacific-Asia Conference on Knowledge Discovery and 
Data Mining 

Conference Date: MAY 20-23, 2008 

Conference Location: Osaka, JAPAN 

Conference Sponsors: Japanese Soc Artificial Intelligence, Osaka Convent & 
Tourism Bur, Commemorat Org Japan World Exposit 70, Kayamori Fdn Informat 
Sci, Air Force Off Sci Res, Asian Off Aerosp Res & Dev, Future Syst Corp, 
Salford Syst, Math Syst 

Abstract: Word-based relations among technical documents are immensely 
useful information but often hidden in a large amount of scientific 
publications. This work presents a method to apply latent semantic 
indexing in frequent itemset mining to discover potential relations among 
scientific publications. In this work, two weighting schemes, tf and tfidf 
are investigated with the exploitation of latent semantic indexing. The 
proposed method is evaluated using a set of technical documents in a 
publication database by comparing the extracted document relations with 
their references (citations). To this end, the paper uses order 
accumulative citation matrices to evaluate the validity (quality) of 
discovered patterns. The results also show that the proposed method 
successfully discovers a set of document relations, comparing to the 
original method that uses no latent semantic indexing. 

Addresses: Thammasat Univ, Sirindhorn Int Inst Technol, Muang, Pathumthani 
12000 Thailand. 
Reprint Address: Theeramunkong, T, Thammasat Univ, Sirindhorn Int Inst 
Technol, 131 Moo 5 Tiwanont Rd, Muang, Pathumthani 12000 Thailand. 

Cited Reference Count: 12 

Publisher Name: SPRINGER-VERLAG BERLIN 

Publisher Address: HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY 

ISSN: 0302-9743 

ISBN: 978-3-540-68124-3 

29-char Source Abbrev.: LECT NOTE ARTIF INTELL 

Source Item Page Count: 8 

ISI Document Delivery No.: BHT20 

AN Y
KNOWL INF SYST 6 : 664 2004 

CHEN CM
Title Not Available
INFORM PROCESS MANAG 35 : 401 1999 

DEERWESTER S
Title Not Available
J AM SOC INFORM SCI 41 : 391 1990 

GARFIELD E
Title Not Available
SCIENCE 178 : 471 1972 

HAN J
2000 ACM SIGMOD INT 2000 1 

KESSLER MM
Title Not Available
AM DOC 14 : 10 1963 

MCCALLUM AK
BOW TOOLKIT STAT LAN : 1996 

SMALL H
J AM SOC INFORM SCI 42 : 676 1973 

SRIPHAEW K
ARTIF INTELL : 112 2005 

SRIPHAEW K
IEICE T INF SYST 90 : 1131 2007 

THEERAMUNKONG T
INT J INTELL SYST : 149 2004 

YUN U
P 2006 SIAM C DAT MI : 623 2006 



More information about the SIGMETRICS mailing list